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Turbulent convection for a rotating layer of fluid heated from below is studied in 
this paper. The boundaries of the fluid layer are taken to be free. The underlying 
principle used is the Malkus hypothesis that the flow tends to transport the 
maximum amount of heat possible, subject to certain constraints. By taking the 
Prandtl number to be infinite, a linear differential constraint and an integral 
constraint are used. The variational problem that follows then depends on two 
dimensionless parameters, the Taylor number T and the Rayleigh number R. 

Asymptotic analysis for the turbulent regime shows that the flow arranges 
itself so as to tend to offset the stabilizing effect of the rotational constraint, 
a t  least in so far as the heat flux is concerned. The dimensionless heat flux, or 
the Nusselt number, has in general different dependence on T and R, depending 
on the particular region in the parameter space. For T 6 O(R), the flow is 
essentially non-rotating. For O ( R )  6 T 6 O(R+), the flow will always have 
finitely many horizontal wavenumbers, though the total number of modes 
increases as T increases in this region. For O(R9) 6 T 6 O(R%), the Nusselt 
number has a functional dependence proportional to R3/T2, having essentially 
infinitely many horizontal modes as both R and T increase indefinitely in this 
region. The last expression is particularly interesting, as i t  agrees qualitatively 
with results in finite-amplitude laminar convection. It is also linearly dependent 
on the layer thickness, as one might expect from dimensional argument. It is 
suggested that, in the context of the maximum principle, the result in this 
region of the parameter space may be applicable as well to the same fluid layer 
with rigid boundaries through the existence of an Ekman layer that is thinner 
than the thermal layer. 

1. Introduction 
The closure problem in the study of turbulent shear flows is well known. The 

problem arises because of the nonlinearity in the Navier-Stokes equation so 
that the equation for the nth statistical moment of the flow quantities depends 
on the (n + 1)th moment resulting in a hierarchy of coupled equations. To reduce 
the infinite system to a finite one, various closure schemes are used. They amount 
to the replacing of the equations of motion by some weaker constraints. One can 
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therefore legitimately ask if some weak constraints can be found that will 
bypass the difficulty of having to deal with the nonlinear terms directly, yet 
give a reasonable description of the mean quantities. The Malkus theory of 
statistically steady turbulence serves just such a purpose. I n  essence, this is 
accomplished by establishing an extremum principle subject t o  some con- 
straints weaker than the equations of motion. I n  its original form, the principle 
of maximum dissipation was offered as plausible (Malkus 1954, 1956). 

Townsend (1961) clssified the Malkus assumptions as falling under two 
categories: kinematic and dynamical. Using just the kinematic assumptions 
alone, he succeeded in obtaining the approximate velocity profile by considering 
the best way to approximate the asymptotic distribution with a finite series 
giving non-positive values for the mean vorticity gradient. By using the same 
kinematic assumptions, Nihoul (1966) was able to  extend the Malkus theory, 
and obtained the mean velocity profile in an MHD channel flow. 

With a different approach, Howard (1963) recast the Malkus theory on statis- 
tically steady turbulent convection in the form of a variational problem. He 
placed the emphasis on the aspect of maximum dissipation which in that case 
is equal to  maximum heat transport. As constraints, Howard used the two first 
integrals, called power integrals, of the equations of motion. Subsequently, 
Busse (1968,1969) extended Howard’s formal technique to allow a broader class 
of solutions, and applied it to  both turbulent convection and turbulent shear 
flows. Aiming a t  improving the upper bound on the heat flux, Chan (1971) 
applied the technique to  the study of turbulent convection when the Prandtl 
number was taken t o  be infinite. The effect is to  replace the first power integral 
by a linear differential constraint which implies the former. I n  this sense, then, 
it tightens up the field of competitors for the variational problem, thus giving 
rise to  a better bound when compared with experiments. 

While the upper-bound solution in either form does not satisfy the full equa- 
tion of motion, and must therefore not be confused with the real flow, one could 
nonetheless ask whether or not the upper-bound solution bears any qualitative 
or quantitative relation to  the real flow, beyond merely providing an  upper 
bound to  the heat flux. For this purpose, we shall examine the idea behind some 
of t,he closure schemes in the theory of statistical turbulence. For example, in 
the quasi-normal approximation, the hierarchy of moment equations is closed 
by assuming a relation between the fourth- and the second-order cumulants as 
if the joint probability distribution is normal. Alternatively, in the third-order 
cumulant discard scheme, the closure is achieved by discarding cumulants of 
third order and higher. Whatever closure scheme one uses, the hope is to replace 
an infinite system by a finite one, and that the solution from the finite system 
will be close enough to  the real flow. I n  fact, the relation between the solution 
space of the full equations of motion and the solution space under any closure 
scheme is not clear. It is therefore entirely possible that the approximating 
solution, even if i t  is close to  the real flow, is itself not a member of the exact 
solution space, as illustrated in figure 1. Indeed, the quasi-normal approximation 
is found t,o possess non-physical properties such as a negative energy spectrum 
(Ogura 1969), and is therefore not a real flow. While the general feature as 
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( i i i )  

FIGURE 1. Solution space (i) of the full equations of motion, (ii) under a closure 
scheme, (iii) of the upper-bound approach (under power-integral constraints). 

exhibited in figure 1 also holds for the third-order cumulant discard scheme, 
Herring (1963) showed that it is equivalent to the quasi-linear or the mean-field 
approximation, which includes only the interaction between the mean and the 
fluctuating fields, but ignores the interaction among the fluctuating quantities. 
In  this approximation, however, the energy balance of the real flow is retained. 

The upper-bound solution with power-integral constraints, on the other hand, 
attempts to approximate the real flow from a different track. It is clear that the 
power integrals are part of the infinite system of moment equations (e.g. the so- 
called first power integral can be obtained by considering the correlation be- 
tween the velocity u(x,t) and the momentum equation a t  the same x and t ,  
and then averaging it over the layer). Incompressibility of the fluid now assures 
that the effect of the nonlinear term will not be included, thus bypassing the 
closure problem. Using these power integrals instead of the infinite system as 
a constraint therefore enlarges the class of functions from which we seek the 
upper-bound solution. This class of functions now contains the set of solutions 
to the full equations of motion (as also illustrated in figure 1). This is the price 
we pay for bypassing the closure problem. However, the approximation thus 
found has the advantage of retaining the energy balance of the real flow. Further- 
more, it could at least be said that this approach seeks an approximation from 
a class of functions which contains all of the real flows. Whether or not the 
upper-bound solution is a reasonable approximation to the real flow really 
depends on, among other things, how much larger the set (iii) is compared with 
the set (i). In  fact, Howard suggested that ‘it is not unreasonable to suppose that 
the successive imposition of more and more integral consequences of the Bous- 
sinesq equations as constraints on the problem of maximum heat transport will 
give a sequence of problems whose solutions converge in some useful sense to 
the solution of the problem with the full Boussinesq equations as constraints’. 
In other words, it is reasonable to view the upper-bound solution under the 
power-integral constraint as a first step toward obtaining a useful approximation. 

Similarly, it is suggested that the infinite Prandtl number treatment can be 
viewed in the same light. To be sure, the relation between the solution space of 
the full equations of motion and that of the infinite Prandtl number treatment 
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is not clear. In  any event, Chan (1971) showed that the optimal solutions (with 
g = co) have the same structure as the mean-field solutions and in fact satisfy 
the mean-field equations. The only difference lies in the proportionality con- 
stants that will be determined by a maximal principle for the optimal solutions 
and presumably by some stability criterion for the mean-field equations. It 
seems reasonable, therefore, to view the solution as at  least in some sense a first 
step toward the upper-bound solution using the full equations of motions as 
constraints, despite the conceptual difficulty that the solution resulting from the 
weaker constraints does not even satisfy the full equations of motion and the 
fact that the upper bound thus obtained is only valid for high Prandtl number 
flows. In  fact, the good agreement, both qualitative and quantitative, with 
experiment for the non-rotating case (Chan 1971) makes it difficult not to view 
the upper bound solution (with g = to) as a first-order approximation to the 
real flow. While the author does not necessarily advocate that the upper-bound 
solutions (in either form) be taken as an acceptable approximation to the real 
flow, he nonetheless feels, in view of the above explanations, that no great harm 
will be done if we look a t  the upper-bound solution as representing the real 
flow, keeping in mind that perhaps the discussion is valid only when the Prandtl 
number ofthe fluid is high enough or when the interactions among the fluctuating 
fields are negligible. 

At any rate, since the first power integral is a statement of energy balance, 
it cannot differentiate additional constraints on the flow as long as those con- 
straints are energetically inactive, e.g. a rotational constraint. The infinite 
Prandtl number treatment, on the other hand, is particularly suitable as long 
as those energetically inactive constraints appear linearly in the momentum 
equation. Taking the Prandtl number to be infinite, Chan (1972) extended the 
study on free convection to the case with a rotational constraint. It was shown 
that the optimal solution was asymptotic to the finite-amplitude result of 
Veronis (1959). The case of turbulent convection allowing only one horizontal 
scale was also obtained. 

In  this paper, we study the problem of turbulent convection under a, rota- 
tional constraint, again taking the Prandtl number to be infinite, but allowing 
the solution to have as many horizontal scales as possible. Each horizontal 
mode, characterized by a horizontal wavenumber a, corresponds physically to 
a certain horizontal scale of motion (e.g. the horizontal scale of the eddies). 
The different scales of motion are of course coupled because the problem is 
nonlinear. By considering only the boundary-layer solution when the parameters 
are large, however, i t  is possible to handle the nonlinear coupling which in that 
cme occurs only between two succeeding scales of motion. In any event, the 
problem is characterized by two dimensionless parameters, the Taylor number 
T and the Rayleigh number R. The resultant dimensionless heat flux, or the 
Nusselt number Nu is rather complicated, depending on the relation between 
T and R. Briefly, the parameter space can be divided into three regions. For a 
weakly rotating constraint (i.e. T < O(R)), the effect of the rotation is not felt. 
For a moderately rotating system (i.e. O(R) < T c O(R*)), the primary effect 
of the rotation is the suppression of the number of horizontal modes (i.e. there 
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are only finitely many horizontal modes for any given T and R in this range, 
even as both T and R go to infinity). For a strongly rotating system (i.e. 
O(R*) < T < O(R%)) ,  the flow is allowed to have infinitely many horizontal 
modes as both T and R go to infinity. For the last two cases, the Nusselt number 
is always found to be smaller than its non-rotating value, corresponding to the 
same R. This agrees with the conclusion of Veronis (1959) that, for high Prandtl 
number flows, the effect of the rotational constraint is always to suppress con- 
vective motion, so that the transport of heat is always less effective than in the 
non-rotating case. On the other hand, this finding differs from the experimental 
data of Rossby (1970), who reported that the heat flux will first increase with 
increasing T before it decreases. Therefore, care must be taken before applying 
the optimal solution or the quasi-linear approximation to a real flow. In any 
event, within the constraint of a high Prandtl number, the solution suggests 
the following physical interpretation. For a moderately rotating system, the 
shortest scale of motion is limited and the eddies cannot be broken down in- 
definitely. For a strongly rotating system, on the other hand, there is no limit 
to the breakdown of the eddies. It is suggested that this kind of behaviour 
results because the flow tends to arrange itself in such a way as to remove the 
effect of the rotational constraint which suppresses convection. This is done in 
the breaking up of the flow into small eddies which tend to cancel the suppression 
due to the rotation. 

In  thenon-rotating case, simple analysis suggests (Chan 1970) that the optimal 
solution has only one horizontal scale, giving rise to a Nusselt number propor- 
tional to RS. In  a moderately rotating system where the suppression of heat 
transport is not too strong, the breakdown of the flow into small eddies must 
be limited, as otherwise the optimal ‘flow ’ may result in the transport of a greater 
amount of heat than in the non-rotating case. On the other hand, the suppression 
of heat transport due to a strongly rotating constraint is so great that, no matter 
how small the eddies may be, it  will not result in the transport of more heat than 
in the non-rotating case. Consequently, in its effort to offset the rotational 
constraint, the optimal solution results in breaking down into small eddies 
indefinitely. Preliminary investigation indicates that this phenomenon is found 
only when the boundaries are free. Apparently, it is a result of the fact that the 
non-rotating optimal solution allows only one eddy size, regardless of how large 
the Rayleigh number is (by contrast, the optimal solution for rigid-rigid boun- 
daries has indefinitely many horizontal scales of motion as R increases). After 
the variational problem is formulated in 9 2, the asymptotic analysis leading to 
the above result will be discussed in 993-5. 

Though the free boundaries used in this study make i t  difficult to compare 
with experimental data, the result for a strongly rotating system is particularly 
interesting. The fact that the thermal layer in that case is thicker than the 
Ekman layer suggests that, in this region of the parameter space, the optimal 
solution will always behave as if the boundaries are free, even if the actual 
boundaries are rigid. The appropriate matching will then take place in the 
Ekman layer. An indication that this argument is valid may be found in the 
data of Rossby (1970), who reported that the onset of convection for large T is 
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found to be at  values of R lower than those predicted by the linear theory based 
on rigid-boundary conditions. The experimental data in fact fit those values 
based on free boundaries. In any event, the data of Rossby are probably ob- 
tained at values of T and R too low for asymptotic analysis, though spot checking 
does show that the optimal Nusselt number is in fact larger than the experi- 
mental value. These and other aspects of the analytic results are discussed in 6 6. 

2. The formulation of a variational problem 
Consider the idealized situation of a layer of fluid, infinite in its horizontal 

extent, being heated from below. It is further assumed that the fluid is under 
the constraint of a rotation about the vertical axis. Mathematically, we take as 
a model the Boussinesq approximation. The model essentially treats the fluid 
as incompressible except for the buoyancy term in the momentum equation, 
Taking the thickness of the layer as d ,  the temperature difference as AT, the 
thermometric conductivity and the kinematic viscosity of the fluid (both being 
treated as constants) as K and v, respectively, the velocity, lengths, time and 
pressure can be non-dimensionalized by, respectively, K / d ,  d ,  d2/K and pvK/d2, 
where p is the constant mean density of the fluid. In non-dimensional form, the 
Boussinesq equations are written as 

2 
Q-1 + u . ~ u )  = - E-1VP + V ~ U  + R T ~  + E u  k, 

V . u  = 0 and aT*+u.VT* at = V2T*, (2), (3) 

where u = (u,v,w) is the velocity, P the pressure, T* the total temperature 
field, E = v/(SZd2) the Ekman number, Q = v/k the Prandtl number and 

R = ( c ~ g A T d ~ ) / ( ~ v )  

the Rayleigh number. The quantity T in the momentum equation is defined by 

T* = T*+T, (4) 

which is the deviation of the temperature field from its horizontal mean T*. 
The overbar notation is used throughout to denote the horizontal average, or 
ensemble average, while the bracket is used for the layer average: 

(f) = p a z .  0 (5) 

The boundary conditions for a free and perfectly conducting top and bottom 
are such that the vertical component of the velocity and the horizontal shear a t  
top and bottom must vanish : 

au av 
az az w = o ,  -- - - = O  at z = O , 1 ,  

(7a, b )  To + AT a t  z = O ,  T * = -  at z = I .  AT 
T* =- 

AT 
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By the continuity equation, the vanishing of the horizontal shear implies 

a2wlaz2 = 0 at z = 0, l .  (8) 

T =  0 a t  z =  0, l .  (9) 

By (4) and (7a,  b), then, we also have 

To formulate the variational problem, we now make the following assumptions. 
(i) The flow is statistically steady in time and homogeneous in the horizontal 

(ii) The horizontal averages of the horizontal velocity components vanish. 
(iii) All necessary horizontal averages of the functions describing the flow 

exist. 
Furthermore, we restrict the study to the case where the Prandtl number of 

the fluid is infinite. This has the advantage of yielding a linear differential con- 
straint from (1): 

Since the nonlinear term u . V u  is energetically inactive and the flow is assumed 
statistically steady, the neglected terms have no effect on the energetic balance 
of the flow. Furthermore, since the Coriolis term u x k is also energetically in- 
active, the linear momentum equation satisfies the same energetic balance as 
the full momentum equation: 

averages. 

E-1VP = V 2 u  + RTk + (2 /E)  u x k. (10) 

R ( w T )  = ( I V U ~ ~ ) .  (11) 

This equation, usually referred to as the first power integral, is obtained by taking 
the inner product of u and the momentum equation, then averaging across the 
layer. This ensures that the F = co assumption will not violate the energetics of 
the physics. As the rotational constraint does not appear explicitly in (3)) the 
mean temperature 

(12) 
- dT" - -P-wT E - -wT = - i - ( w T ) ,  

dz 
and the second-power integral 

(wT)~--  (wT~)+ ( w T )  = (lVT12), (13) 

follow in the same manner as in Chan (1971). The Nusselt number N u ,  which is 
the dimensionless heat flux across the layer, is then given by 

dT" 
s u = - ( ; l ; ) j  z=o = l + ( w T )  

from (12). 
To formulate the variational approach, we now seek to maximize N u ,  subject 

to the integral constraint of (13) and the differential constraint of (10). By the 
change of scaling 

u = ( w T ) * R h ,  T = (wT)*R-*O, (15) 

(16) 

where v = (V.S)?+(V.Jl)j+Wk, 

(1 0) becomes E ~ V  + ek) - (wT)-*R-*vP = 2k x V .  
31-2 
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Next we decompose the solenoidal v field into a poloidal part vQ and a toroidal 
part v*: 

( 16) becomes 
v = VQ + v* = - v x (V x $fc) + fc x V$; 

E(V2v6 + V2v,, + 6g) - (wT)-tR-)VP = 2fc x ( - V, 9. + V",k + fi x V$), 

where 
a a  v -$--+j- - ax ay 

is the horizontal del operator. Taking the k component of the horizontal curl 
of the above equation, we have 

2 aw 
V2f+--= 0, satisfying f = 0 at z =  0,1, ( 1 7 ~ ~  b )  E az 

or 

where f = V;$ is the vertical vorticity component. In the non-rotating case, 
E = 00, (17u,  b)  imply that f = 0. Here, f is coupled to w through the rotational 
constraint and no longer vanishes. Taking the k component of the double curl 
of (16), we obtain 

a a 
a Z  az 

- E ( V 4 w + V ? 8 )  = - ~ - ( & . V X V )  = -2-V2,$; 

(18) 
V4w+V?6---  2 af = 0. 

E a z  i.e. 

Combining ( 17 a) and ( 18), we have 

(19) 
a2w 

a22 
V % + V 2 V ? 6 + T -  = 0, 

where 

is the Taylor number. With the scaling of (15), the second power integral becomes 

1 -R-1(lV612) F = N U - l =  
(( 1 - w73)2) ' 

which is obtained by noting that 
( ~ 6 )  = 1 

- - 
and ( 1 - ~ 6 a ) =  -(;JeZ-zSe+i)= -((i-we)2). 

The variational problem of maximizing N u  subject to ( 10) and ( 13) is now equiva- 
lent to the maximization of 

V4u+V;6---  af)) + 2A'(w6 - 1) + 2 E az 

subject to the boundary conditions 
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In  (23), p' = p'(x, y, z ) ,  q' = p'(x, y, z )  and A' = const. are the Lagrange multi- 
pliers for ( 1 7 4 ,  (19) and ( Z O ) ,  respectively. It is clear that the variational prob- 
lem of (23) will determine only 8 and w. Yet, once w and 8 are determined, the 
first power integral, which now assumes the form 

(1VV12) = 1, 

(IVVl2> = (IV4,,+V11.,l2+ IV4,,-VA!l2+ lvV:412) 

will automatically be satisfied. Indeed, 

= - (v:q5v4ljr)+ (1c,v2v:$) 

) = - (V@V44 +-j 1c,z v:q5 2 a  

= -(v;4(~44-;$)) = + ( w e )  = 1, 

by using (18) with w = V:q5 and f = V:$. 

can now be obtained: 
Using standard procedure, the Euler equations for the variational problem 

(25a) 
~ 4 ~ + ~ ( i - - w B p + ~ e - - -  2 aP = 0, 

E az 

v4w + v2,0 - -- 2af = 0, E a z  

2 a4 v2p+-- = 0, 

2 a& 
V2f + -- = 0, E az 

Eaz 

where 
A' P' 

(( 1 -W0)2)' A =  P =  P' - 
(( 1 - w0)2)' ( ( 1 - w e ) 2 ) '  

P =  

We can now eliminate f, q, p ,  A,  to arrive at 

RF -!.- V2(V + T g )  8 + (CB + T 2) [ (1 --a+;) o] - V:V2[ (1 -a+;) 81 = 0, 

(26) 

satisfying the boundary conditions, 
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Next we shall show that h - O( 1) regardless of what R and T are. To see this, 
we multiply ( 2 5 a )  by w ,  (25b)  by 8, (25c )  by q, then take the layer average of 
these equations; we have 

( wV4q) - F ( ( 1 - + h - f ( w  g ) = 0, 

- R-l( lVe12) - F ( (  1 - a)2) + h + (0V;q)  = 0, 

( q v 4 4 +  

Subtracting the last equation from the sum of the first two, using the fact that 

( ~ v 4 q )  = ( q v 4 4 ,  ( e v w  = ( q v w ,  

2h - 2F( (  1 -w8)2) - R-1( 1Ve12) + 

Making use of the boundary conditions on f,  w ,  p and q, using (25d ,  e ) ,  

z ( q z - W g ) = - ; ( f ~ - p ; ) = - ( f v 2 p - p v 2 f )  2 af = 0; 

i.e. 2h = 2-R-1(lV812) or Q G h = $ + & ( i - B - y p e 1 2 ) )  G 1, ( 3 0 )  

since F must be positive definite, so that 

O < 1-R-1(IVB12) < I. 

The fact that h N O( 1) will later on be used in the boundary-layer analysis. 
To maximize F ,  we must solve the nonlinear equations (27)-(  28) .  As in the case 

where SZ = 0, the nonlinearity is of a form such that they allow solutions whose 
horizontal dependence is separable, i.e. 

N 

n=l 
OJ = C. OJn(Z) hn(Z, Y), (31 )  

etc., with V2,h = -a;h, and (hnhm) = Snm, (32 )  

where an,, is the Kronecker delta. 

ordinary differential system, for n = 1 to N :  
By considering these separable solutions, (27)-( 2 8 )  now become a nonlinear 

As we are still unable to solve the system for arbitrary values for R and T ,  we 
shall restrict ourselves in the following to boundary-layer solutions as F+ 00 

with R+m and T + m .  
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Before we do that, however, it is worth noting that another asymptotic solu- 
tion corresponding to F < 1 can also be studied. If F a 1 is to be interpreted as 
the turbulent regime where the convective heat flux is large, F < 1 must then 
be related to the onset of convective motion. I n  fact, expressing both w and 8 
as power series of P immediately yields the same equation used in linear stability, 
with higher-order terms consistent with finite-amplitude convection results 
(Chan 1972). This fact then enables us to use results from the linear stability 
theory within the maximum principle. 

3. The single-a boundary-layer solution 
While it is possible to obtain the multi-a solution directly by a procedure 

similar to that  used in the non-rotating case, we shall first study the single-a 
structure in detail (i.e. N = 1 in (31)). This will then provide much insight into 
the multi-a structure to be discussed in 3 4. 

Consider a conceptual experiment where both R and T are large enough that 
the flow is in a turbulent regime (i.e. F $ I). Suppose R is now fixed, and T is 
increased gradually. There must come a point a t  which no convection is possible, 
since the linear theory predicts that  convection cannot be maintained unless 
R 2 O(T%).  Mathematically it suggests the necessity of considering two different 
asymptotic functional dependences for F ,  depending on the relation between 
R and T. I n  the non-rotating case, the condition F $ a 9 1 is always main- 
tained, where the wavenumber a determines the length scale of the eddies, so 
to speak. I n  the rotating case, therefore, we seek the two different ranges of F 
as F F 9 1 for moderately and extremely large values of T 
(in relation to R). This observation is in fact one of the basic differences between 
the study of rotating and non-rotating cases. With this in mind, we now proceed 
to the formal asymptotic solution. 

For the single-a case, the Euler-Lagrange equation is easily obtained from 
(33)-(34) by setting N =  1. As in the non-rotating case, it is assumed that 
Fl 9 1 and a, 9 1, where the subscript on F indicates the single-a constraint. 
To obtain the boundary-layer solution, it is found that three different regions 
are needed: the interior, the transition layer and finally the boundary layer. 
What their thickness is will become clear in the following analysis. 

I n  the interior region where (dldz) N O ( l ) ,  the balance of (33) and (34) can be 
obtained easily by keeping z fixed and letting R, T, a and F go to infinity, taking 

af < T < a!. (35) 
This then results in -a:w,+a;fe, = 0 (36) 

a 9 1 and a 

and a9 -8,-a:(l -w18,)w,+a~(l-w,8,)8,  = 0, 
RF, 

(37) 

which suggest that we take 

with both 8, and 6, to be O(1). Using (30)) F can now be expressed as 
w, = a,’8,, 8, = a$,, (38) 

2h-  1 F =  
( ( l - w z y ) ’  

(39) 
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where the numerator is of O( 1) .  F 9 1 then clearly requires that 
- 

i - w e =  i - w l e l E ~  
holds in a large part of the fluid. This can be achieved by assuming that 

a!/RF < 1 (40) 

0, = o1 = 1. (41) 

Presumably, then, w1 and 8, (which vanish at the boundaries) must build up 
rather rapidly in a thin layer towards their interior value of aT1 and al, respec- 
tively. As in the non-rotating case, such a matching demands the existence of a 
transition layer. 

and substituting (38) into (37). Thus, we have, in the interior, 

Assume now that the transition layer is of order el < 1.  We write 

z-zo = el& for zo = 0 or 1, (42) 

and ~1 = ai1Gi(ti)9 81 = al i i (~) ,  (43) 

[(ei2D2 - a33 + ( T/s;) P] dj1 - a: (ei2D2 - a?) 8,: = 0, 

a i2  < €21 = T/a! < 1 

in view of (38). Equation (34) now becomes 

(44) 
where D = d/d(,. Physically, this is the layer where the effect of rotation begins 
to take effect. This requires mathematically that the balance 

(45) 

be taken, which in turn poses a limit for T beyond which either convection cannot 
be maintained, or else the rotation will be too weak to be felt: 

a! < T < a!. (46) 
Holding El fixed, and letting R, T and F go to infinity, (33) and (34) become 

(D2-l)&l+dl = 0 and 1-B16,  = 0. (47h (48) 
In this layer, only one of the boundary conditions for w1 can be satisfied. Together 
with asymptotic matching, ijl must then satisfy the conditions 

Gl(0) = 0 and i j l ( ~ , + O o )  = 1.  (49) 

While the existence of such a solution can easily be established, i t  is only im- 
portant that its form as t1 + 0 be obtained as 

e,-l= w1 N a,1c110g+&2+ ... . (50)  

Finally, for the boundary-layer balance, let 

Anticipating the matching condition as Cl+m, (50)  and (51) suggest that 

with 
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It is now important to  consider the two different cases for Fl - O(T*/(algl)), 

(i) Fl 9 a, B 1 or (ii) a, $ PI 9 1.  (54) 

For (i), the inner limit of (34) is now 

where D = d/d&. Anticipating that Fl > Tt and that g1 < 1, it is further re- 
duced t o  

D69, = 0. ( 5 5 )  

The boundary and the matching conditions then give 

ijl = Q. 
Similarly, (33) then becomes, under the same assumptions, 

The appropriate balance is now taken to be 

i.e. = ts,IO1 exp - i c 2 t t )  ( I  - t2)adt. (61) 

Fl can now be computed as a function of a,, which will then be chosen so as t o  
yield a maximum Fl. 

Using the separable solution, with N = 1, 

and 

where 

and the faotor 2 in (62) accounts for the two boundary layers, at z = 0 and 1. 
Using (58) and defining 

Setting aFl/aal = 0,  and using (58) again, one obtains 
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Straightforward calculation then shows 

and 

The various assumptions on ordering now indicate that (68) is valid as long as 

O(R) e T < O(R?b), 

owing primarily to the fact that g1 < 1 is assumed. 

because here, V2 N - a: instead. Keeping this in mind, (34) readily becomes 
For case (ii) of (54), the proper balance for the boundary layer must be different 

772 -1 [ lgl gggJ 61 = 0, i.e. D2Gl = 0. (69) 
T2 -D2Gl+a:T2 a6 210 - alsI 

Likewise, (33) becomes 

026, + D2( 1 - G,S1) 4jl = 0. 1 

The proper balance is therefore 
T2 -1 

RFla:gI log~2]  a1 91 = 1. 

Integrating (69) and (70) with the boundary and matching conditions now yields 

4 = Cl and 8, = Cl/( 1 + 5;). (72) 

A straightforward computation, similar to those above, then gives 

where (74) 

In  (73), the term due to ((dB/dz)2) (i.e. the term that corresponds to the last 
term of the right-hand side of (62)) is negligible compared with Fl, in view of 
(71). Maximizing F1 with respect to a1 now yields 

and (77) 

valid for O(RtlogRg/T) < T < O(Ra), (78) 

the restriction on the lower end being required by the assumption that Fl f a, 
here. 
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\ '  
\ I  

P -layer 
a: 

5 layer 

FIGURE 2.  Schematic structure of the multi-a solution. 

This form for the convective heat flux is particularly interesting when corn- 
pared with the linear theory. According to linear stability analysis, the onset 
of convection for large T occurs when R = O(T8).  One might then expect that, 
for R N O ( T Q ) ,  F will then be O(1). Equation (77), indeed, predicts the same 
qualitative behaviour when the result is extrapolated to T - O(R*), though it 
may not be quantitatively correct. As we shall see, the same qualitative feature 
is to persist for the multi-a structure as well. 

4. The multi-a boundary-layer solution 
As in the non-rotating case, the purpose of seeking a multi-a solution is to 

increase F by an order of magnitude. The form o f F  as in (39) suggests that this 
can be achieved by making I - w8 N 0 for as large a range as possible. 3'-1 will 
then be of the same order of magnitude as the boundary layer in which 1 - ~0 
is not asymptotic to zero. Suppose that, for certain values of R and T ,  the 
single-a solution is able to maintain a certain boundary layer of thickness, say, 
8, < 1. If a second mode a2 can be introduced, SO that 1 - 3 is now asymptotic 
to zero in the Sl layer, and differs from zero only in a layer of thickness 8, < a,, 
the value for F corresponding to such a solution Will thus be increased from its 
single-a value by an order of magnitude. Higher modes may then be introduced 
similarly. This essentially corresponds to the physical stituation of the breaking 
up of the flow into smaller eddies. Schematically, the introduction of higher 
modes can be represented by the structure of figure 2. Such a structure is now 
complicated by the presence of the second parameter T .  As was explained 
previously, it must be expected that, as T increases while R is held fixed, F will 
eventually have to decrease towards zero (i.e. for each additional mode, two 
ranges for F must again be considered). 

Consider the process of maximizing F by adding one additional mode a t  a 
time, with the notation Fm to denote the value of 3' as a result of the nth mode 
being added. FN is of Course just F when there are altogether N modes. As shown 
in $3, when N = 1, there are two different cases, ((i) F, B aI B 1 and (ii) 
a, $ Fl $ i), corresponding to two different regions in the R, T space (i.e. for 
a fixed R, assumed to be large, 4 will go from the first range to the second one 
as T is increased beyond a certain order of R). TO construct a solution having 
two wavenumbers, then, the value F2, for the same value of R and T ,  must be 
an order of magnitude larger than Fl. In  range (i) above, we thus seek a solution 

- 
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k (section number) 
7t (mode r- A 

\ 

number) 0 1 2 ... N - 1  N 
h 

& 
1 F, > a, a, > F,  1 

2 FZ > a, FS > up a2 % F,  S 1 

A 
I > 

N FN > aN FN > U N  FN > U N  LYN > FN B 1 

TABLE 1. Recursive relationship between Fn and a, 

F2 9 a, 9 a,-while F, B F,. As T is increased to values in range (ii) above, we 
continue to seek a solution having two horizontal wavenumbers such that 
F, 9 a, 9 a1 and F, 9 Fl remain true. This cannot be maintained for indefinitely 
increasing values of T however. For T large enough (keeping R fixed), convection 
is expected to stop. Mathematically, it  must correspond to a different functional 
dependence of F, on R and T ,  so that a, 9 F, F, now holds instead (i.e. for a 
2-01 solution, there must be three different regions (i)-(iii) in the R, T space such 
that, in (i) F, $:a, and F, 9 a,, in (ii) F, 9 a, and a, 9 F, with F, 9 F,, and in 
(iii), where T is extremely large, a, 9 F2, a1 9 F,, though F, 9 Fl continues to 
hold). Similarly for each additional mode. It is thus easy to see that, for a solu- 
tion having N horizontal modes, there must be N +  1 different regions in the 
parameter space, in each of which the relation between F, and a, changes one 
at a time, in the manner described above. These different regions may be ob- 
tained by keeping R fixed as T increases. Each time, as T is increased beyond a 
certain order of R, one of the F,, a, pair will change their relative order. Denoting 
each of these R,T regions by a section number k, we summarize the above 
behaviour in table 1 (e.g. in section N -  1, i.e. for T lying in between two R- 
orders, we shall have a1 B Fl, a,  9 F, ..., aN-, 9 FV-,, but Fv 9 aN, whereas, in 
the Nth section, we shall have instead ai 9 Fi for all i = 1 to N ) .  

While structures of the type shown in table 1 assume that in any section it is 
possible to seek a solution having more and more horizontal modes, it  turns out 
that such an indefinite increase in the value of N is not always possible; but this 
is not obvious a priori. For the purpose of a systematic study, we should none- 
theless assume the possibility of such an indefinite increase in N ,  then proceed 
to determine the condition under which it is indeed possible. 

In the following analysis, we shall denote all quantities by a double subscript 
(n, k) where n represents the horizontal mode and k indicates the validity of 
the solution in certain range of R, T relation, yet to be determined. 

By analogy with the single-a structure, we again need three different layers 
for each mode. Take, for example, the (n + 1)th mode. There will be an interior 
region which is the boundary-layer region of the nth mode, a transitional layer 
of O(Ti/a;+,), and finally a boundary layer of 0(an+,gn+,/T*). We shall also 



Turbulent convection under a rotational constraint 49 3 

use the notation Fn for n c N with F;l designating the thickness of the nth 
boundary layer (i.e. the boundary-layer thickness of 1 - wBif the nth mode were 
the highest-order mode). Of course, P = 4". 

In  the various layers, we now write, for n = 1 to  N ,  

(79) 

The relative ordering for w and 6 is chosen as above by the requirement that 
06 N O( 1) throughout the boundary layer and beyond. To proceed, assumptions 
must now be made about the ordering of the an,,'s. The structure of the solution 
assumes that higher modes have a shorter length scale, so it is natural to assume 
that 

- 

a,,,,, 9 a , ,  for all n, k. (80 )  

By analogy with the single-a solution, the balance of (34) in the interior of the 
nth mode (i.e. the CnWl,k layer) necessitates the additional requirement that 

a i , k  T 2 / ( a ~ - l , k g ~ - l , k ) *  (81) 

1 - ' n ,  k On, k - dn-1, k on-1, k = 0 

Again, the consideration that in the Cn-.l,k layer 
_. 

1 - 06 ( 8 2 )  

E ~ ~ , ~ / ( R F ~ )  < 1 (1 < n < N ) .  (83) 

also requires, from (33), 

In  any event, in this layer, either by arguments such as those above, or by 
making formal balance of (33) and (34), with appropriate assumptions such as 
(81) and (82), one readily obtains 

(84) A n , k  = Bn,k  = a;,; (1 6 n < N ) .  

The solution in the Cn-l, , layer is then 

' n ,  k = On,,, (85) 

in addition to (82). As for the transitional layer, reasoning similar to that used 
in obtaining the single-a solution, gives 

h n , k ( D 2 -  l )Gn, ,+l  = 0,  D = d/dCn,&, (86) 

with &n,k(O) = and (9n,k('$n,k-fCO) = (86) 

while d n , k ( t n , k )  = 1/Gn,jc(tn,k).  (87) 
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These are clearly t,he same as functiona,lly, so the matching condition for 
now likewise requires that 

Using these values, the formal balance of (34), in a manner like that of the 
single-a case, now gives 

O 2 d n , ,  = 0 with Gn,k(0) = 0 and d n , k ( c n , k + C O )  = Cn,k, 

or simply d n , k  = Cn,k- (89) 

Finally, the equations for 6,, k can now be obtained either by formally taking the 
inner limit of (33) and (34), or by an appropriate maximizing consideration. 
In  any event, direct computation gives 

where the notation ( ) indicates an integration from 0 to infinity against the 
appropriate argument of the function for all n >, 1, and the convention that 

adk ( @ k )  = I dz = 4 is used. For F' to be a maximum, ( 2 1 )  now suggest,s 

that the expression in (90) must be of order R. In the non-rotating case, where 
Fn > a, is always true, this is accomplished by making every term in (90) of 
order R, yielding therefore 2N equations for the 2N quantities a , ,  and gn,k.  
With the rotational constraint, however, Frisk B a n , k  is not always possible, as 
illustrated in table 1.  The single-a solution shows that the effect of Fn,k < an,k is 
to make the contribution from the nth mode to the term ((df9/dz)2) negligible. 
A reference to table 1 now clearly indicates that (90) will be reduced, for asymp- 
totic purposes, to 

1 
T9 0 

N 
( 1 ~ 0 1 2 )  = 2 c a t , k a n - l p k g n - l - k  ( 0 : ~  

n=l T i  

by dropping the terms for n < k. The requirement that these1terms be of order 
R will now provide only 2N - k equations: 

R (1 < n <  N ) ,  ( 92) 
an-l, kgn-1, k 

JT 
k 

and 

Another k constraints will now be obtained by taking 
T2 -1 

a $ , k g n , k l o g - ]  d, k 9;. k N R (1 < n < k) 

(93) 

(94) 
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by analogy with (71)) with the consideration that Fn,k N T*/(crn,kgn,,c). In  fact, 
the formal balance of (33) for Jn+3,k and on,k for 1 < n < k requires precisely 

which together with (92) imply (94). Here, we use the convention 

='= 4 and ( )j,j+s= ( )j,j for s 2 0, T+ 

in accordance to the relations of table 1. Keeping in mind that k is considered 
fixed, (92) to (94) must now be divided into two systems: for 1 < n < k and 
k + 1 < n < N .  In  solving the second system, the aim is to express all the an,k7s) 
etc., in terms of the etc. As for the first system, (96) indicates that it must 
be solved recursively for k instead, until everything is in terms of an,n, etc. 

In  any event, for n > k, writing (93) as 

-4 an-l,kgn-l,k T+ 
R)log)(n- 1,k) an-l, k)  T+ 

and, using (92), one obtains recursively 

T2 
where 

Reducing n downward to k now yields, for n > k, 

log (n, k) = log- at, k !&, k ' 

3) q(l-31+k-n) n-k-1 n 1og33-j(n-j7 k), 
j = 1  

an, k = bn, k (m) (ak+l, k)31+k-n 

where b ,  is a constant. Using (92) for n = k + 1, and (94) for n = k, now gives 

so that, for n > k, 
@'k+Lk (R2/T)bai,k10ga (k, k), 

n-k-1 C L Y + ~ - ~ I O ~ ~ ~ ~ + ~ - ~  ( k ,  I C )  1ogt3--j (n-j, k). (97) 
R* 

%,k = b n , k ~ + ( l + 3 i + ~ - n )  k j=1 

Using (92)) (94)) and (96) to solve for k recursively for 1 < n < k now yields 

where we have used the known fact that Rl,o = 
and (98) jointly, we finally obtain 

N R f .  Upon using (97) 

for k < n, (99) 



496 S.-K. C h n  

k n - k - 1  
gi,,log(n,k) n l~gY~~~”~~j(k+l-j,k+l-j) n IogWj)(n-j,k) 

j = 1  j = l  
T f ( 3  + i d  - 79-2 - k3k - n 

R4(3+7.31- 79-*:2-k3k-* =- for k < n, (101) 

(102)  

. .  
n- 1 T3(1-2Fn)  

j = 1  
and 

These results can in fact be obtained by formally balancing (33) and (34) in 
each layer in a manner similar to the non-rotating case. There are, for the 
nth mode, n + 1 sections to be considered, in the manner of table 1.  In  any event, 
having obtained these relations, the order of F N , k  can be readily estimated as 
T4/(a,v,k,gN,k). To maximize FN,k, we have to vary the b n , k ’ s ,  as well as the 
functions and on+T,k, etc. 

Upon substituting (99)-( 102) into the expression for F, and considering 
specifically k < N - 1 ,  we have 

g n , n  log (n, n) J-J 10g3/2i+~ (n. -j, n -j) = R4-$2-“ ‘ 

N N 

1 -  c 2 b i , l i b n - l , k ( & , k ) -  c 2b; , i (QA:k)  

9 (103) 
n = l  n = k + l  

K.v,k = N 

C bN, k(an, k g n ,  k)/(aAT, k g N ,  k ) ( ( ’ -  &n,k6n, k - 8 i + l , k ) 2 )  
n= 1 

with -%,k = K N , k  (104) 
T%V, k 

gS, k a.V, k ’ 
where G,, is given by (89) and (85) has been used to obtain the 8:+,k term in 
the denominator. 

For fixed a’s and g’s (i.e. fixing bn,k’s), the order of F is determined to be as 
large as possible within the limit of having only N modes. Its maximization 
with respect to o and 8 now means the maximization of KN,k only. For this 
purpose, it  is necessary to set 6K,,, = 0 by varying the @n,k’s and the 8n+l,k’s. 
Doing this will result in only 2N - k equations, the additional equations must 
then be found by the formal limit of (33) and (34). For k < n < N ,  therefore, 
setting CYK,~,, = 0 by varying 6n,k and on+,,, gives 

to 

satisfying Oi\T,k(O) = 0; o A r , k ( C i V , k + m )  = &,k* (108) 
For n + N ,  as long as 8n+l,k + 0, (105) and (106) can be combined to yield 

2b-,7 n k- d 2 6 n i k + b ~ + , b n , k G n , ,  = 0 ( N  > n > k). 
dCk k 



Turbulent convection under a rotational constraint 497 

As c n , k + ~ ,  however, 1 -&non-+ 0 and so does 8n+1, so that (109) cannot hold 
for very large values of f ;n , k ,  i.e. must now satisfy ( l o g ) ,  with 

Qn,k(O) = 0,  (110a)  

but the solution must merge (with a continuous first derivative) with the solution 

1 -&n,kQn,k = 0 (110b)  

numerically. Now, of the 4N unknowns, {Gn, on, 8,, gn}?, the set {Qn, Gn}y has 
already been determined by (89) and (85). Of the remaining 2N unknown 
functions, (107)  and (109) provide altogether 2N - 2k constraints for 

k + l < n , < N .  

Another 2k constraints must now be sought directly from (33 )  and (34)  in the 
l&k layer for 1 < n < k: 

1 
k On+l, k + 2(1 - &n, k On, k - $%+I, k) On+I, k = O, (111) -- 

3% 

Equation (95) now yields, as long as $. 0, 

( 1 1 3 ~ )  

satisfying (113b)  

which must merge with 
1-8, ,0n, ,  = o as < n , k + ~  (113c)  

as 8n+l,k+0. Here, only the continuity of on,k is required, because (113a)  is 
really algebraic. Having thus determined {on, &”, the remaining functions 
{On, ,}? are now simply given by 

(114) 1 - Qn, k on, k - gE+l, k = 0. 

By appropriate scaling, these equations will be reduced in the appendix to 
several typical systems free of any parameters. Using those results, KN,k can 
then be expressed in terms of the b’s alone. For convenience, let us now drop 
the k subscript, keeping in mind that k -= N ,  we finally have 

or 

bq+ 2 y-+ bi+l 3- l  C h B + 2 , 8 K $ b ; 1 ) ] / [ 2 b ,  b3 
n=l bn k+l bn 

M + = 2 I + K $ = b N ( l - b : - y C - - - h  bi+l 
1 bn 

where I+ is defined in (63), and y, A, /I are constants to be defined in the appendix. 
Maximizing KN, or M,, with respect to  the bn’s readily gives, by setting 

aKN/ab, = 0 for 1 ,< j < N ,  

32 F L M  64 
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After some straightforward though rather involved algebraic manipulation, 
( 1  16) is solved to yield 

(117)  b$, = (3N-k2k+' + 2k+' - 3)-1,  

and 
1 - 2 4  

bn+l,k = 2";) bf-3.2-" ( 1  < n < k ) ,  

Direct substitution then results, for k < N, in 

(k < N). ( 1 2 0 )  

While these results are formally valid for any N, as long as k < N, the case 
k = N can be easily obtained by some minor modification. This is the range 
where the rotation is so strong that, even for the Nth mode, a N , N  1 
holds. The mathematical manifestation of this is that there will be no ( ( d O / d z ) 2 )  
contribution to F .  In  fact, ( 1 0 3 )  reflects this rather clearly by adopting the 

FN,N 

N 
convention 2 = 0. In  addition, (105) and (106) will no longer hold, since the 

N + l  
condition k = N < n under which these were derived cannot be met. In its 
place, ( 1 1 1 )  and (112) will now hold for all 1 < n < N. The only necessary 
change here, then, is the equation for ON,,", which now becomes, from (112)  
with 8N+l ,N  0, 

- ( K N , N ~ ~ , ~ ~ ) - ~ D ~ B N , N + D ~ ( ~ - ~ , ~ , N ~ N , N ) ~ N , N  = 0,  ( 1 2 1 )  

satisfying = and 8 . V , N ( 6 N , N - f a )  = 6k.N. (122) 
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Appropriate scaling as shown in the appendix again reduces, dropping the 
second subscript for simplicity, to 

N-1 

1 
1-bi-Y C b2n+l/bl, 

KN = 
2I-b,(Kib%)-l ' 

The maximizing conditions corresponding to (116) now take the form 

(125) 

+-=o 

b% 
1 b, n+l) bN-l 

( 2 <  .. n < N -  I), - 4 b : f y C  b2, = 0, -- 2bn 
1 b i  bn-1 

1-b4,-y 2 - -27- = O .  
N-lb2 

Straightforward manipulation now yields 

b!,,, = (4.2N-3)-1, 

which is the same as (117) with k = N .  Furthermore, in general, 

1 1-$2-" 
- gn-++f.~-n ~ 

bn+l, N - (4 .2N-3)  ' 
(126) 

Direct substitution now formally yields 

1 24n-3+3.21-N 
KN,N = - (127) 417 

2(1-2-N)N--I 

and FAT,, = K N , N  ($) n ( aN- 2 
j = O  j ,  N-j  gN-j, N - j  

or FN,N - - K N,N 24(1-2-N)-UV (129) 

Note that, for N = 1, (120) and (129) are reduced, respectively, to (68)  and (77) ,  
as they should. Furthermore, while K N , N  cannot be obtained from (119) by 
sett.ing k = N ,  the order of can indeed be shown to be the same as that in 
(120) by taking k = N .  We shall use this observation in $ 5 .  

5. The determination of N 
While the solutions obtained in $ 4  are subject to the constraints of having 

N modes, the number N itself is as yet undetermined, There are really two 
aspects of this problem. To begin with, the formal solutions obtained above must 
satisfy certain assumptions made in the asymptotic analysis. If at some point 
the increase of N beyond a certain number violates any of those assumptions, 
it will then determine the maximum number of modes possible. On the other 
hand, if no such violations take place, N may then be allowed to increase inde- 
finitely. As it turns out, for a fixed value of R, the total number of modes allowed 

32-2 
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is in fact finite as long as T < O(Rt) ,  though N will be allowed to increase froin 
1 to 2 to 3, etc., as T increases. For T > O(R4), however, N will be allowed to 
increase indefinitely depending on R and T .  We shall proceed to show this in 
the present section. 

Throughout the analysis, we have only said that the subscript k represents a 
certain relation between the parameters R and T .  Such a relation was never 
explicitly determined, Having now obtained the asymptotic forms of the 
various quantities, table 1 now enables the determination of this relationship for 
each k. That is, in the k section, the results must satisfy 

&-,k < a k , k  and &+I , ,  2 a k + l , k .  (130) 

If the exact forms for F and a are used, i t  is possible to define the relationship 
exactly. On the other hand, by using just the order-of-magnitude estimate, 
the algebra is much simplified and gives sufficient bounds within the context of 
asymptotic analysis. Following this path, then, and neglecting the logarithmic 
order, (130) requires that the kth section represents the requirement 

(131) R(4.2k-3)l(3.2k-2) < \ T < R(8 .2k-3 ) / (S .2k2) .  

Note that the upper limit is the same as the lower limit when k is replaced by 
k + 1 in the latter expression. This simply means, of course, that the lower limit 
of the (k + 1)th section coincides with the upper limit of the kth section. 

Now, for a given k, suppose a solution having N modes has been found, the 
existence of a solution with N + 1 modes will then depend on 

(132) F z $ l , k  G T'la%+l,k < F i ; l c  

being satisfied (see figure 1). This, to the same approximation as in (131), in 
turn imp1ies R,  R(192k~~Y-~+Z0.2k-90)/(9.2k3'v-k+15.2k-~) 

(133) 

FN+l ,k  2 a N f l , k ,  (134) 

(1 35) 

Thus, a solution having N+1 modes exists only if both (133) and (135) are 
satisfied. This, in turn, depends on whether N > k or N = k, i.e. whether the 

if N = k), respectively. Table 1 shows clearly that the case N = k +  1 is the 
most crucial step, as that will always be the f i s t  time that Fv,k > a,v,k happens. 
Using this value for N in (133) and (135) immediately shows that C > A for all 
k (i.e. once a solution has been obtained that F > a, it  will not be possible to 
introduce higher modes). On the other hand, for N = k, (133) and (135) now 

< \ \  T < R(~2~3v-k_iL2k+8)1(3.2k3N-k-3.2k+4) RC. 

In  addition to (133), we must also have 

which requires that 
T < R(12.2k3N-k+4.2k-6)l(9.2k3N-~+3.2~-4) RA. 

N-mode solution is such that FN,k > a N , k  Or F N , ~  < E,v,k (which happens Ody 

(136) become, respectively~ R( lS .2~- l5 ) / (12 .2~- lO) )  T < Rp, 

which is seen to be superfluous when compared with (131). Furthermore, the 
lower bound of (131) clearly has R* as its lowest upper bound. This implies, 
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therefore, that, for T < O(Rt), the maximizing solution can have at most 
finitely many modes, the last one being that F,,,k 2 aN,k for the first time with 
respect to  N .  This, of course, happens a t  N = k +  1. I n  other words, the kth 
section (i.e. (131)) will have a maximizing solution having k + 1 modes. On the 
other hand, (131) shows that the range T >, O(Rt) always lies in the ( k ,  k )  mode 
for whatever value of k (as long as T 2 O(R*)); FN,,, < ctN,-,, always holds. I n  
other words, for this range, the maximizing solution is allowed to have inde- 
finitely many modes ( N  remains arbitrary). 

We must now turn our attention to this range, where B’ is given by (127) and 
(129). To determine N ,  we let N vary, and seek the value of N for which 

Writing 
aF,.,,/aN = 0 

p = 2 4 ,  

and treating it as a continuous variable, aqV,,/aN = 0 is now equivalent to 
d (logE’I,,,)/d,u = 0,  i.e. 

4 12 + 6 log 2 - 310gp + 310g (4- 3 , ~ )  +- +- - 3 

” 2 
4- 3p P 

P 4-3P 

4log2+--2log 

For large N ,  p -+ 0, so that the dominant terms are 

2/p - 2 log (RQ/T) = 0;  

N = (10g2)-~10gp-l = (10g2)-ll0gl0g (Rt/T).  

(137) 

(138) 

i.e. N will in general depend on R and T as 

Substituting this value into (127) and (129) then gives, in the limit of large R 
and T with T 2 O(R*), 

P c: (2912_)-1R3/T2. (139) 

6. Discussion 
Qualitatively, the asymptotic analysis indicates that it is best to divide the 

parameter space into three different regions. For a weakly rotating system 
(T < O(R) ) ,  the rotational constraint is not felt, and convection takes place in 
much the same way as a non-rotating system. For the free-free boundary geo- 
metry, it  is estimated (Chan 1971) that the solution has only one horizontal 
mode, with a - O(Ri )  and the Nusselt number proportional to O(Rf). For a 
moderately large rotational constraint (O(R) < T < O(R*)), the solution may 
have a multi-a structure, depending on the strength of the rotation. For any 
given R and T in this range, however, there are only finitely many horizontal 
modes, no matter how much R and T are increased. The detailed structure will 
depend on finer subdivision in this range. The criterion here is that the solution 
will have as many modes as are necessary for Kv 2 O(a,) to be achieved. This 
is always possible a t  some finite value for N ,  though N increases with T .  Once 
this purpose is accomplished, however, it  will not be possible to increase the 
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total number of horizontal modes any further. For a strongly rotating system 
(O(R5) < T < O(R%)), the suppression of convective motion is so strong that 
FN 2 O(a,) can never be achieved. While it may be said that the system none- 
theless struggles toward this aim, the net result is merely an indefinite increase 
of the total number of modes as R and T increase together while staying within 
this region of the parameter space. For an even stronger rotationrate (T 2 O(R*)), 
the suppression is total, so that no convective heat t,ransport is possible, in agree- 
ment with the linear theory. 

It is believed (Veronis 1959) that, for a high Prandtl number flow, the effect 
of the rotational constraint is always to suppress convective motion so that the 
transport of heat by convection is always less effective then in the non-rotating 
case. The increase of horizontal modes, to  the extent that it may reflect the 
qualitative feature of the real flow, on the other hand, is associatedwith the break- 
down of the flow into smaller eddies giving rise to an increase in heat transport. 
If the effect of a rotational constraint is in fact to suppress convection, one may 
feel intuitively that, the stronger the rotation, the more it will tend to suppress 
small eddies, and therefore fewer modes will be allowed, just the opposite of the 
asymptotic result. This apparent contradiction can in fact be easily resolved by 
the following consideration. Essentially, the Malkus hypothesis assumes that the 
flow will always organize itself so as to give rise to an optimal heat hansport. 
This is done first by a choice of the length scales of the motion, then by a choice 
of the shortest scale (i.e. N ) .  When the rotation is only moderate, the suppression 
of heat transport is not very effective, though the heat flux is somewhat less 
than the non-rotating value. Had the flow been allowed to have a very small 
scale of motion (i.e. higher N ) ,  it would have caused the heat transport to be in 
fact higher than in the non-rotating case. Therefore, the value for N is always 
limited, On the other hand, when the rotation is very strong, the suppression 
of heat transport is so strong that, no matter how many modes the flow breaks 
down into, the resultant heat, flux is still less than the non-rotating value. As a 
result, N is allowed to increase indefinitely in its effort to remove the rota.tiona1 
constraint. 

As was mentioned above, t,he non-rotating Nusselt number is estimated to 
be proportional to &. Given that the effect of the rotational constraint on an 
infinite Prandtl number fluid is to suppress heat transport, the Nusselt number 
must not be allowed to vary more rapidly than Ri. One sees readily that this 
is in fact the case. From the results obtained, it is seen t,hat, for whatever value 
of k, the maximum heat flux is attained when N = k+ 1 and T is a t  the lower 
bound of (131). At these values, (120) immediately shows that F N H, and for 
any slight increase of T within that k section, F will of course be less than 
O(R*). 

This suggests another interpretation of the role of the total number of modes, 
namely that the flow will organize itself by having as many modes as possible 
so as to tend to approach the non-rotating case (i.e. to try to remove the effect 
of the rotational constraint). In  his study of finite-amplitude convection, Veronis 
(1959) concluded that the flow, through the nonlinear advective terms, tends to 
generate internal motions that counteract the rotational constraint. For an 



Turbulent convection under a rotational constraint 503 

infinite Prandtl number fluid, the effects of that nonlinear interaction have been 
neglected. Nonetheless, within the context of a quasi-linear model, the flow 
remains capable of rearranging itself so as to counteract the imposed constraint, 
though by a completely different mechanism. This generation of internal motion 
manifests itself in the form of having more and more modes as the constraint 
gets stronger and stronger. 

I n  this regard it should be pointed out that the asymptotic solutions were 
obtained under the assumption that 191 < 1 for the case F > a. This is necessary 
to obtain, e.g., the balance as in (55). Such a requirement, as it turns out, imposes 
a further condition that R(32.2k-21)/(24.2k-14 

which lies somewhat below the upper bound of (131). What this means is that 
there are sections within the range O ( R )  d T d O(R4) for which the Fk+l,k 
formula does not apply. We cannot say for sure at this time whether the non- 
applicability of the asymptotic results there is a consequence of the formal 
procedure used, and some other ordering process may extend the present result 
to  these ranges, or whether it is a consequence of having two interacting scales 
of motion (as suggested by Rossby 1970). It is believed, however, that the 
conclusion drawn above about the nature of N should remain valid throughout. 
I n  any event, the same difficulty is not encountered for the range 

O(Rg) 6 T d O(R3). 
It is also interesting to note that, if R and T are made infinite by making 

d +oo and holding everything else fixed, T and R satisfy the relation T N O(R4).  
Dimensionality argument may then suggest that the total dimensional heat 
flux in that case should be independent of d .  This is in fact the case, since 

(140) ), 

F ~ 3 1 ~ 2  - d 9 p  d .  

I n  the non-rotating case, the same argument suggests a Nusselt number depen- 
dence of RB. Though no hints as to  the functional dependence can be suggested 
in the rotating case by similar arguments, it is nonetheless interesting to note 
that F N d for large T ,  and R still holds as long as T 3 O(R4). 

While the nature of the boundary condition studied renders it impossible t o  
make detailed comparison with any experimental work, it is nonetheless in- 
structive to compare the present result with the work of Rossby (1970). Rossby 
observed that, for fixed R, the heat flux first increases above its non-rotational 
value as T is increased, until it reaches a maximum, then decreases again as 
T increases. He thus raised the question of whether or not it is possible that the 
first observable effect of the rotation may be the interaction of the thermal layer 
with the  Ekman layer, thereby making the boundary condition free so that the 
fluid ends up by convecting more heat than in the non-rotating case. Our study 
seems to rule out such a possibility, since the first observable effect of the rota- 
tional constraint comes in when T > O ( R )  for which F - R%lT*, which is less 
than H, as T increases beyond O ( R ) .  It seems more likely that any initial 
increase of the heat flux with respect to T may be due t o  some nonlinear inter- 
action between the fluctuating quantities, which is neglected here. I n  his study 
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on subcritical instability in a rotating fluid, Veronis ( 1  966) explained that sub- 
critical steady convection can exist provided that the Prandtl number is less 
than a certain value. This is mathematically equivalent to the inclusion of the 
self-interacting terms of the momentum equation. On the other hand, the infinite 
Prandtl number assumption is equivalent to the mean-field approach (Herring 
1963), where only the interaction between the mean and the fluctuating fields 
is included. I n  this case, t,he heat transport by convection is achieved by the 
distortion of the mean temperature profile by the fluctuating quantities. With 
a rotational constraint, some of the energy released from the mean profile is 
used up against the balance of the thermal wind; therefore the effect of 5 rota- 
tional constraint is to  transport less heat upward. Tlus is indeed the case here, 
as the balance in the transition layer of order Tt/a3 is achieved by a balance of 
the TD2w and the VqS term (i.e. the vertical variation of the velocity component 
and the horizontal variation of the temperature gradient). Consequently, the 
heat flus is always decreasing with increasing T .  

On the other hand, we do find evidence suggesting that, for a strongly rotating 
system, the effect of the Ekman layer is indeed to make the boundary conditions 
look free. For T >, O(Rt) ,  the thermal layer is of order 1/F N TIR), which is 
much thicker than the Ekman layer O(T-4). I n  this case, even if the boundaries 
are rigid, we can still treat them as free in the thermal layer. The rigid boundary 
condition = 0 can now be satisfied by the balance 

(DB+TD*)w = 0, 

with the matching condition w + [  as C-tco. This would indeed cause the heat 
transport to be higher than it might have been for a rigid boundary geometry, 
but not high enough to surpass that of the non-rotating case. 

Finally, one may ask how the asymptotic solutions will change if the more 
realistic case of rigid boundaries is studied. Some preliminary results indicate 
that, a t  least for the single-a case, the maximizing wavenumber is the same as 
that of the non-rotating case, giving rise t o  a Nusselt number proportional to 
RP. with some additional factor depending on T in a logarithmic manner, so 
that  the effect of T on F is in fact quite weak here. Beyond that, it seems that, 
since the solution for the non-rotating case allows N to increase without bound 
for large R, the same may be true for the rotating case as well. It also seems 
rather likely that, especially within the context of the maximum principle, 
whenever T is large enough so that the Ekman layer becomes thinner than the 
thermal layer, the fluid will behave as if the boundaries are free, thereby trans- 
porting heat somewhat more effectively. I n  this sense, then, the present result 
may be valid also for rigid boundaries when T i  < I / F .  

This research was supported in part by the Office of Naval Research, contract 
NOOO14-69-A-0060-002 and a National Science Foundation Institutional sub- 
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Appendix 

suggest the normalization 
The differential equation (107) for ON and its boundary conditions (108) 

QN,k = (b%,k&Y,k)*f> CN,k = [l/(b%,,KN,k)l*L-. (A 1) 

d2f/dC2+ (1 - 6f) 6 = 0, f ( 0 )  = O,f(m) = C-I. 

Together with (89), (107) and (108) then reduce to 

(A 2 )  

It can readily be seen that (A 2 )  is the same as (59), so that  

Similarly, it  is seen that, for k < n < I?, 
on,, = [(bi+l,k%,k)/2I*g, Cn,k = [2/(bt+1,k%,k)1‘7. (A 4) 

Equation ( log) ,  using (89), becomes 

d2g/dy2 + ‘I = 0, (A 5) 

which must satisfy the boundary condition g(0) = 0 and merge numerically 
with 7-1 with a continuous first-order derivative; i.e. 

Likewise, for 1 G n < k, (89) and the scaling 

reduce ( I  13a)  to 
(d2/dt2)( --lt+t) = 0, (A 8) 

which must satisfy h(0) = 0 and merges numerically with the function <-1. 

Here, a discontinuity in its first derivative is allowed, since ( d $ / d ~ ) ~  for these 
modes does not enter in the formula for the Nusselt number. Presumably, this 
signifies an internal boundary layer, since (1 11) and (1 12) really is a system of 
equations with a small parameter. For our purpose, however, we need not con- 
cern ourselves with the structure of this boundary layer. At any rate, 

By direct substitution into (103) ,  (115) follows, where the constants are given 
bv 
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Finally, for k = N ,  using (89) and 

OA‘, N = ( K N ,  N %, N h ,  P N ,  N = (KN, N b$, N ) + { ,  (A 14) 

~ 2 [ - q + ( 1 - C d c I  = 0, (A 15) 

satisfying q(0) = 0 and q(m) = C-l. (A 16) 

Hence, Q = C P  + 6% (A 17) 

(121) and (122) become 

which is the same as (73).  Consequently, 
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